Документ подписан простой электронной подписью

Информация о владельце: МИНИСТЕРСТВО НА УКИ И ВЫСШЕГО ОБРАЗОВАНИЯ ФИО: Максимов Алексей Борисович

ФИО: Максимов Алексей Борисович РОССИЙСКОЙ ФЕДЕРАЦИИ
Должность: директор департамента по образовательной политике
Дата подписания: 09федеральное государственное автономное образовательное учреждение

Уникальный программный ключ: высшего образования

8db180d1a3f02ac9e60521a5672742735c18b1d6 «MOCKOBCКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ Директор Иолиграфического института Л.В. Нагорнова/ 11 30 W 410H 2020r.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Управление качеством в 3D-печати»

Направление подготовки 27.03.02 Управление качеством Профиль Управление качеством в принтмедиа

Квалификация (степень) выпускника Бакалавр

> Форма обучения Очная

Москва 2020 г.

1. Перечень планируемых результатов изучения дисциплины, соотнесенных с планируемыми результатами освоения образовательной программы

В результате освоения основной профессиональной образовательной программы бакалавриата обучающийся должен овладеть следующими результатами обучения по дисциплине «Управление качеством в 3D-печати»:

Коды компе- тенций	Содержание компетенций	Перечень планируемых результатов обучения по дисциплине
ОПК-1	способностью	Знать:
01111 1	применять знание	- методы управления качеством;
	подходов к управлению	- нормативную документацию на методы измерений,
	качеством	испытаний и контроля;
		- методы контроля форматов данных, подготовленных к
		выводу (3D-печати)
		- методы оценки качества изделий, изготавливаемых
		посредством 3D-печати
		Уметь:
		- выбирать методы контроля качества подготовки массивов
		данных к выводу и качества готовой продукции;
		- проводить операции измерения, испытаний и контроля в
		соответствии с требованиями нормативной документации;
		- выбирать методы и средства контроля изделий,
		изготавливаемых посредством 3D-печати;
		Владеть:
		- семью статистическими методами управления качеством; - методами измерений. испытаний и контроля изделий,
		изготавливаемых посредством технологий 3D-печати;
		- нормативной документацией на методы измерений,
		испытаний и контроля изделий 3D-технологий;
		- участвовать в выработке управляющих решений по итогам
		анализа результатов контроля
ОПК-2	способностью	Знать:
	применять инструменты	- семь простых статистических инструментов управления
	управления качеством	качеством;
		- семь новых инструментов управления качеством;
		- стандарты на применение методов статистического контроля
		Уметь:
		- выбирать статистические инструменты управления
		качеством в зависимости от особенностей процесса
		изготовления изделий 3D-технологий и технических
		характеристик этих изделий;
		- пользоваться нормативной документацией на процессы измерений, испытаний и контроля изделий 3D-технологий;
		- применять новые инструменты управления качеством с
		целью обеспечения дальнейшего улучшения качества;
		- пользоваться стандартами на методы контроля и приемки
		готовой продукции
		Владеть:
		- семью простыми статистическими инструментами
		управления качеством;
		- семью новыми инструментами управления качеством;
		положениями стандартов на применение методов
		статистического контроля процессов, анализа дефектов и
		методов приемочного контроля
ПК-28	способностью	Знать:
	обоснованно выбирать и	принципы и методы обоснованно выбирать и осуществлять
	осуществлять	ранжирование отдельных операций общих технологических
	ранжирование	схем процессов 3D-процессов сканирования и вывода

отдельных операций общих технологических схем основных процессов полиграфического и	Уметь: обоснованно выбирать и осуществлять ранжирование отдельных операций общих технологических схем процессов 3D-процессов сканирования и вывода Владеть: навыками обоснованно выбирать и осуществлять ранжирование отдельных операций общих технологических
упаковочного производства	схем процессов 3D-процессов сканирования и вывода

2. Место дисциплины в структуре ОПОП

Учебная дисциплина Б.1.ДВ.6 «Управление качеством в 3D-печати» относится к циклу дисциплин Б.1.ДВ «Дисциплины по выбору студента» в блоке Б.1.2 Вариативная часть.

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины «Управление качеством в 3D-печати» составляет 4 зачетные единицы.

Объём дисциплины по видам учебных занятий (в часах) –очная форма обучения

Вид учебной работы		Семест	гры
		7	
Аудиторные занятия (всего)		72	
В том числе:			
Лекции	36	36	-
Лабораторные работы	36	36	-
Самостоятельная работа (всего)		36	-
В том числе:			
Подготовка к занятиям (изучение лекционного материала, литературы)	28	28	-
Реферат	8	8	
Курсовой проект	-	-	-
Вид промежуточной аттестации (экзамен)		36	-
Общая трудоемкость час / зач. ед.	144/4	144/4	1

4. Содержание дисциплины

4.1. Тематический план дисциплины

			Конта	ая		
№	Наименование тем (разделов)	Всего часов	Лекции	Лабора- торные работы	Практи- ческие занятия, семинары	Самостоятельня работа
1	Раздел 1. Аддитивное производство. Основные особенности и отличия от традиционных методов.		4	-	-	4
2	Раздел 2. Классификация технологий 3D печати.		4	-	-	4
3	Раздел 3. Программное обеспечение. Создание и подготовка 3D-модели.		4	8	-	4
4	Раздел 4. 3D сканирование.		4	8	-	4

5	Раздел 5. Экструзионные методы 3D- печати. Порошковые методы 3D- печати.		4	8	-	4
6	Раздел 6. Струйные методы 3D-печати.		4	4	-	4
7	Раздел 7. 3D-печать биологических объектов.		4	-	-	4
8	Раздел 8. Мультистадийная и непрерывная 3D-печать методом фотополимеризации.		4	4	-	4
9	Раздел 9. Литографические и гибридные методы 3D-печати.		4	4	-	4
	Всего	108	36	36	-	36
	Экзамен	36	-	-	-	36
	Итого час/з.е.	144/4	36/1	36/1	-	72/2

4.2. Содержание разделов дисциплины

Раздел 1. Аддитивное производство. Основные особенности и отличия от традиционных методов. Определение аддитивных технологий производства. История 3D-печати. Области применения 3D-печати.

Раздел 2. Классификация технологий 3D печати. Экструзионные методы печати. Струйные методы печати (Material/Binder Jetting). Печать методом фотополимеризации. Печать путем послойного спекания порошка (Powder Bed). Печать методом прямого подвода энергии (DED).

Раздел 3. Программное обеспечение. Создание и подготовка 3D-модели.

Компьютерное проектирование: твердотельное моделирование, моделирование поверхности, скалптинг. 3D-сканирование и фотограмметрия. Лечение STL-файлов. Слайсинг. Моделирование в 3D-печати.

Раздел 4. 3D сканирование. Классификация 3D сканеров. Основные технологические характеристики сканеров. Точность 3D-сканирования. Лазерное 3D-сканирование при создании электронной копии деталей. Устройство и принцип работы лазерного 3D-сканера. Управление процессом сканирования. Оптическое 3D-сканирование при создании электронной копии деталей. Управление процессом сканирования.

Раздел 5. Экструзионные методы **3D-печати.** Метод нанесения расплава (FDM). Преимущества и недостатки метода. **Порошковые методы 3D-печати.** Селективное лазерное спекание. Сплавление электронным пучком (EBM). Многоструйная печать. (МЈГ)Преимущества и недостатки методов.

Раздел 6. Струйные методы **3D-печати.** Струйная печать. **3D-печать** DOD и NPJ. **3D-печать** связующим (BJ). Преимущества и недостатки методов.

Раздел 7. 3D-печать биологических объектов. Скаффолды. Биопечать на основе капель. Печать с использованием биочернил. Экструзионная биопечать. Преимущества и недостатки методов.

Раздел 8. Мультистадийная и непрерывная 3D-печать методом фотополимеризации. Стереолитография (SLA) и проекционная печать (DLP). Постобработка в SLA и DLP. Советы по проектированию в SLA / DLP. Печать с использованием непрерывного жидкого интерфейса и другие методы быстрой печати методом стереолитографии. Двухфотонная лазерная литография (2PP). Преимущества и недостатки методов.

Раздел 9. Литографические и гибридные методы 3D-печати. Электрохимическая 3D-печать. EFAB: рабочий процесс. Управляемые факторы.

4.3. Практические занятия (семинары)/лабораторные работы

- 1. Тема 1 (Разделы 3-9). Ознакомление с методикой и особенностями создания моделей в Paint 3D.
- 2. Тема 2 (Разделы 3-9). Ознакомление с ПО 3D сканирования, инструментами управления процессом сканирования.
- 3. Тема 3 (Разделы 3, 5) Ознакомление с технологическими характеристиками экструзионных 3D-принтеров и средствами управления качеством вывода (печати).
- 4. Тема 4 (Разделы 3, 5) Ознакомление с технологическими характеристиками порошковых 3D-принтеров и средствами управления качеством вывода (печати).
- 5. Тема 5 (Разделы 3, 6) Ознакомление с технологическими характеристиками струйных 3D-принтеров и средствами управления качеством вывода (печати).
- 6. Тема 5 (Разделы 3, 9) Ознакомление с технологическими характеристиками литографических методов 3D-печати и средствами управления качеством вывода (печати).

5. Учебно-методическое и информационное обеспечение дисциплины

5.1. Основная литература

- 1. А.Е. Шкуро, П.С. Кривоногов, «Технологии и материалы 3D-печати», учеб. пособие / Урал. гос. лесотехн. ун-т, Екатеринбург, 2017.
- 2. Amit Bandyopadhyay, Susmita Bose, «Additive Manufacturing» / CRC Press, 2015
- 3. T.S. Srivatsan, T.S. Sudarshan, «Additive Manufacturing: Innovations, Advances, and Applications» / CRC Press, 2016
- 4. Н. П. Мидуков, М. А.Литвинов, Инженерная и компьютерная графика. Технологии 3D-печати, сканирования и моделирования деталей сложной формы: учебное пособие. Петерб. гос.ун-т пром .технологий и дизайна, Высш. шк.технологии и энергетики.-Санкт- Петербург: ВШТЭ СПбГУПТД, 2022.

5.2. Дополнительная литература

- 1. Chee Kai Chua, Kah Fai Leong, 3D Printing and Additive Manufacturing: Principles and Applications (пятое издание, 2016) // WorldScientific Publishing Company Pte Limited
- 2. Lydia Cline, 3D Printing with Autodesk 123D, Tinkercad, and MakerBot, (2015) // McGraw-Hill Education
- 3. М.А. Зленко, М.В. Нагайцев, В.М. Довбыш, Аддитивные технологии в машиностроении (2015) // М. ГНЦ РФ ФГУП «НАМИ»
- 4. Chee Kai Chua and Wai Yee Yeong, Bioprinting: Principles and Applications (2014) // World Scientific Publishing Company Pte Limited
- 5. Chee Kai Chua, Murukeshan Vadakke Matham, Young-Jin Kim, Lasers in 3D Printing and Manufacturing (2016) // World ScientificPublishing Company Pte Limited

5.3. Программное обеспечение (перечень лицензионного и свободно распространяемого программного обеспечения)

- 1. Программные продукты Microsoft Office Professional 2013
- 2. PTC Mathcad15
- 3. CorelDrawGraphicsSuite X7AutoCADDesign Replication G0400
- 4. Cura
- 5. 3DScan

- 6. Blender 3.1.2
- 7. MasterSCADA
- 8. Ultimaker Cura 5.0.0
- 9. Microsoft: WIN HOME 10 Russian OLPNL AcademicEdition Legalization GetGenuine.

5.4. Современные профессиональные базы данных и информационные справочные системы

- 1. Единое окно доступа к образовательным ресурсам Федеральный портал http://window.edu.ru
- 2. Компьютерные информационно-правовые системы «Консультант» http://www.consultant.ru, «Гарант» http://www.garant.ru.
- 3. Официальный интернет-портал правовой информации http://pravo.gov.ru.
- 4. Научная электронная библиотека http://www.elibrary.ru
- 5. ЭБС «Университетская библиотека онлайн» https://biblioclub.ru/index.php
- 6. Университетская информационная система Россия https://uisrussia.msu.ru
- 7. Электронно-библиотечная система IPRbooks [Электронный ресурс]. URL: http://www.iprbookshop.ru/
- 8. Электронно-библиотечная система «Айбукс» [Электронный ресурс]. URL: https://www.ibooks.ru/

6. Материально-техническое обеспечение дисциплины

- 1. Лекционные аудитории общего фонда, оснащенные учебной мебелью, доской, переносным/стационарным компьютером и проектором.
- 2. Аудитории для проведения практических занятий общего фонда, оснащенные учебной мебелью, доской.
- 3. Компьютерный класс техника с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно- образовательную среду.
- 4. 3D- сканер.
- 3D-принтер.

7. Методические рекомендации по организации изучения дисциплины

7.1. Методические рекомендации преподавателю

Данный раздел настоящей рабочей программы предназначен для начинающих преподавателей и специалистов-практиков, не имеющих опыта преподавательской работы.

Дисциплина «Управление качеством в 3D-печати» является дисциплиной, формирующей у обучающихся профессиональные компетенции ОПК-1, ОПК-2, ПК-28. В условиях конструирования образовательных систем на принципах компетентностного подхода произошло концептуальное изменение роли преподавателя, который, наряду с традиционной ролью носителя знаний, выполняет функцию организатора научно-поисковой работы обучающегося, консультанта в процедурах выбора, обработки и интерпретации информации, необходимой для практического действия и дальнейшего развития, что должно обязательно учитываться при проведении лекционных и практических занятий по дисциплине «Управление качеством в 3D-печати».

Преподавание теоретического (лекционного) материала по дисциплине «Управление качеством в 3D-печати» осуществляется на основе междисциплинарной интеграции и четких междисциплинарных связей в рамках образовательной программы и учебного плана по направлению 27.03.02 Управление качеством.

Подробное содержание отдельных разделов дисциплины «Управление качеством в 3D-печати» рассматривается в п.4 рабочей программы.

Методика определения итогового семестрового рейтинга обучающегося по дисциплине «Управление качеством в 3D-печати» представлена в составе ФОС по дисциплине в п.8 рабочей программы.

Перечень вопросов к экзамену по дисциплине представлен в составе ФОС по дисциплине в п.8 рабочей программы.

Перечень основной и дополнительной литературы и нормативных документов, необходимых в ходе преподавания дисциплины «Управление качеством в 3D-печати», приведен в п.5 настоящей рабочей программы. Преподавателю следует ориентировать обучающихся на использование при подготовке к промежуточной аттестации оригинальной версии нормативных документов, действующих в настоящее время.

7.2. Методические указания обучающимся

Получение углубленных знаний по дисциплине достигается за счет активной самостоятельной работы обучающихся. Выделяемые часы целесообразно использовать для знакомства с учебной и научной литературой по проблемам дисциплины, анализа научных концепций.

В рамках дисциплины предусмотрены различные формы контроля уровня достижения обучающимися заявленных индикаторов освоения компетенций. Форма текущего контроля – активная работа на практических занятиях, тестирование, подготовка реферата. Формой промежуточного контроля по данной дисциплине является экзамен, в ходе которого оценивается уровень освоения обучающимися заявленных компетенций.

Методические указания по освоению дисциплины.

<u>Лекционные занятия</u> проводятся в соответствии с содержанием настоящей рабочей программы и представляют собой изложение теоретических основ дисциплины.

Посещение лекционных занятий является обязательным.

Конспектирование лекционного материала допускается как письменным, так и компьютерным способом.

Регулярное повторение материала конспектов лекций по каждому разделу в рамках подготовки к текущим формам аттестации по дисциплине является одним из важнейших видов самостоятельной работы студента в течение семестра, необходимой для качественной подготовки к промежуточной аттестации по дисциплине.

Проведение <u>лабораторных работ</u> по дисциплине «Управление качеством в 3D-печати» осуществляется в следующих формах:

- опрос по материалам, рассмотренным на лекциях и изученным самостоятельно по рекомендованной литературе;
- выполнение типовых заданий по темам;
- анализ и обсуждение практических ситуаций по темам.

Посещение лабораторных работ и активное участие в них является обязательным.

Подготовка к лабораторным работам обязательно включает в себя изучение конспектов лекционного материала и рекомендованной литературы для адекватного понимания условия и способа решения заданий, запланированных преподавателем на конкретную работу.

Методические указания по выполнению различных форм внеаудиторной самостоятельной работы

Изучение основной и дополнительной литературы, а также нормативно-правовых документов по дисциплине проводится на регулярной основе в разрезе каждого раздела в соответствии с приведенными в п.5 рабочей программы рекомендациями для подготовки к промежуточной аттестации по дисциплине «Управление качеством в 3D-печати». Список основной и дополнительной литературы и обязательных к изучению нормативно-правовых документов по дисциплине приведен в п.5 настоящей рабочей программы. Следует отдавать предпочтение изучению нормативных документов по соответствующим разделам дисциплины по сравнению с их адаптированной интерпретацией в учебной литературе.

<u>Выполнение заданий</u> в разрезе разделов дисциплины «Управление качеством в 3D-печати» является самостоятельной работой обучающегося в форме домашнего задания в случаях недостатка аудиторного времени на лабораторных занятиях для решения всех задач, запланированных преподавателем, проводящим занятия по дисциплине.

Методические указания по подготовке к промежуточной аттестации

Промежуточная аттестация по дисциплине «Управление качеством в 3D-печати» проходит в форме экзамена. Экзаменационный билет по дисциплине состоит из 2 вопросов теоретического характера. Примерный перечень вопросов к экзамену по дисциплине «Управление качеством в 3D-печати» и критерии оценки ответа обучающегося на экзамене и оценки уровня сформированности заявленных компетенций приведены в составе ФОС по дисциплине в Приложении 1 к рабочей программе.

Обучающийся допускается к промежуточной аттестации по дисциплине при условии достижения положительных результатов семестрового текущего контроля.

8. Фонд оценочных средств по дисциплине
8.1. Перечень компетенций с указанием этапов их формирования в процессе освоения дисциплины. Формы контроля формирования компетенций

Код и наименование компетенций	Индикаторы достижения компетенции	Форма контроля	Этапы формирова ния (разделы дисциплин ы)
ОПК-1 способностью применять знание подходов к управлению качеством	Знать: - методы управления качеством; - нормативную документацию на методы измерений, испытаний и контроля; - методы контроля форматов данных, подготовленных к выводу (3D-печати) - методы оценки качества изделий, изготавливаемых посредством 3D-печати Уметь: - выбирать методы контроля качества подготовки массивов данных к выводу и качества готовой продукции; - проводить операции измерения, испытаний и контроля в соответствии с требованиями нормативной документации; - выбирать методы и средства контроля изделий, изготавливаемых посредством 3D-печати; Владеть: - семью статистическими методами управления качеством; - методами измерений. испытаний и контроля изделий, изготавливаемых посредством технологий 3D-печати; - нормативной документацией на методы измерений, испытаний и контроля изделий 3D-технологий; - участвовать в выработке управляющих решений по итогам анализа результатов контроля	Промежуточный контроль: экзамен Текущий контроль: опрос на лабораторных работах, реферат	Темы 1-9
ОПК-2 способностью применять инструменты	Знать: - семь простых статистических инструментов управления качеством; - семь новых инструментов управления	Промежуточный контроль: экзамен Текущий контроль:	Темы 1-9

управления	качеством;	опрос на	
качеством	- стандарты на применение методов	лабораторных	
	статистического контроля	работах, реферат	
	Уметь:		
	- выбирать статистические инструменты		
	управления качеством в зависимости от		
	особенностей процесса изготовления изделий		
	3D-технологий и технических характеристик		
	этих изделий;		
	- пользоваться нормативной документацией		
	на процессы измерений, испытаний и		
	контроля изделий 3D-технологий;		
	- применять новые инструменты управления		
	качеством с целью обеспечения дальнейшего		
	улучшения качества;		
	- пользоваться стандартами на методы		
	контроля и приемки готовой продукции		
	Владеть:		
	- семью простыми статистическими		
	инструментами управления качеством;		
	- семью новыми инструментами управления		
	качеством;		
	- положениями стандартов на применение		
	методов статистического контроля		
	процессов, анализа дефектов и методов		
	приемочного контроля		
ПК-28	Знать: принципы и методы обоснованно		
способность	выбирать и осуществлять ранжирование		
обоснованно	отдельных операций общих технологических		
выбирать и	схем процессов 3D-процессов сканирования		
осуществлять	и вывода	Промежуточный	
ранжирование	Уметь: обоснованно выбирать и	контроль: экзамен	
отдельных	осуществлять ранжирование отдельных	Текущий	
операций общих	операций общих технологических схем	контроль:	Темы 1-9
технологических	процессов 3D-процессов сканирования и	опрос на	
схем основных	вывода	лабораторных	
процессов	Владеть: навыками обоснованно выбирать и	работах, реферат	
полиграфическог	осуществлять ранжирование отдельных		
о и упаковочного	операций общих технологических схем		
производства	процессов 3D-процессов сканирования и		
	вывода		

8.2. Показатели и критерии оценивания компетенций при изучении дисциплины, описание шкал оценивания

8.2.1 Критерии оценки ответа на экзамене

- **«5» (отлично):** обучающийся демонстрирует системные теоретические знания, практические навыки, владеет терминами, делает аргументированные выводы и обобщения, приводит примеры, показывает свободное владение монологической речью и способность быстро реагировать на уточняющие вопросы.
- **«4» (хорошо):** обучающийся демонстрирует прочные теоретические знания, практические навыки, владеет терминами, делает аргументированные выводы и обобщения, приводит примеры, показывает свободное владение монологической речью, но при этом делает несущественные ошибки, которые быстро исправляет самостоятельно или при незначительной коррекции преподавателем.

- «3» (удовлетворительно): обучающийся демонстрирует неглубокие теоретические знания, проявляет слабо сформированные навыки анализа явлений и процессов, недостаточное умение делать аргументированные выводы и приводить примеры, показывает не достаточно свободное владение монологической речью, терминами, логичностью и последовательностью изложения, делает ошибки, которые может исправить только при коррекции преподавателем.
- «2» (неудовлетворительно): обучающийся демонстрирует незнание теоретических основ предмета, отсутствие практических навыков, не умеет делать аргументированные выводы и приводить примеры, показывает слабое владение монологической речью, не владеет терминами, проявляет отсутствие логичности и последовательности изложения, делает ошибки, которые не может исправить даже при коррекции преподавателем, отказывается отвечать на дополнительные вопросы.

8.2.2 Критерии оценки работы обучающегося на лабораторных работах

(формирование компетенций ОПК-1, ОПК-2, ПК-28)

- «5» (отлично): выполнены все практические задания, предусмотренные практическими занятиями, обучающийся четко и без ошибок ответил на все контрольные вопросы, активно работал на практических занятиях.
- **«4» (хорошо):** выполнены все практические задания, предусмотренные практическими занятиями, обучающийся с корректирующими замечаниями преподавателя ответил на все контрольные вопросы, достаточно активно работал на практических занятиях.
- «3» (удовлетворительно): выполнены все практические задания, предусмотренные практическими занятиями с замечаниями преподавателя; обучающийся ответил на все контрольные вопросы с замечаниями.
- «2» (неудовлетворительно): обучающийся не выполнил или выполнил неправильно практические задания, предусмотренные практическими занятиями; студент ответил на контрольные вопросы с ошибками или не ответил на контрольные вопросы.

8.2.3. Критерии оценки тестирования (текущий контроль)

(формирование компетенций ОПК-1, ОПК-2, ПК-28)

Тестирование оценивается в соответствии с процентом правильных ответов, данных обучающимся на вопросы теста.

Стандартная шкала соответствия результатов тестирования выставляемой балльной оценке:

- «отлично» свыше 85% правильных ответов;
- «хорошо» от 70,1% до 85% правильных ответов;
- «удовлетворительно» от 55,1% до 70% правильных ответов;
- от 0 до 55% правильных ответов «неудовлетворительно»
- **«5» (отлично):** тестируемый демонстрирует системные теоретические знания, владеет терминами и обладает способностью быстро реагировать на вопросы теста.
- **«4» (хорошо):** тестируемый в целом демонстрирует системные теоретические знания, владеет большинством терминов и обладает способностью быстро реагировать на вопросы теста.
- «3» (удовлетворительно): системные теоретические знания у тестируемого отсутствуют, он владеет некоторыми терминами и на вопросы теста реагирует достаточно медленно.
- **«2»** (неудовлетворительно): системные теоретические знания у тестируемого отсутствуют, терминологией он не владеет и на вопросы теста реагирует медленно.

8.2.4. Критерии оценки реферата

- «5» (отлично): тема реферата актуальна и раскрыта полностью; реферат подготовлен в установленный срок; оформление, структура и стиль изложения реферата соответствуют предъявляемым требованиям к оформлению документа; реферат выполнен самостоятельно, присутствуют собственные обобщения, заключения и выводы; подготовлен доклад, излагаемый без использования опорного конспекта.
- «4» (хорошо): тема реферата актуальна, но раскрыта не полностью; реферат подготовлен в установленный срок; оформление, структура и стиль изложения реферата соответствуют предъявляемым требованиям к оформлению документа; реферат выполнен самостоятельно, присутствуют собственные обобщения, заключения и выводы; подготовлен доклад, излагаемый с использованием опорного конспекта.
- «3» (удовлетворительно): тема реферата актуальна, но раскрыта не полностью; реферат подготовлен с нарушением установленного срока представления; оформление, структура и стиль изложения реферата не в полной мере соответствуют предъявляемым требованиям к оформлению документа; в целом реферат выполнен самостоятельно, однако очевидно наличие заимствований без ссылок на источники; подготовлен доклад, излагаемый с использованием опорного конспекта.
- «2» (неудовлетворительно): тема реферата актуальна, но не раскрыта; реферат подготовлен с нарушением установленного срока представления; оформление, структура и стиль изложения реферата не соответствуют предъявляемым требованиям к оформлению документа; в реферате очевидно наличие значительных объемов заимствований без ссылок на источники; доклад не подготовлен.

8.2.5. Итоговое соответствие балльной шкалы оценок и уровней сформированности компетенций по дисциплине:

Уровень сформированности компетенции	Оценка	Пояснение
Высокий	«5» (отлично)	теоретическое содержание и практические навыки по дисциплине освоены полностью; все предусмотренные программой обучения учебные задания выполнены на высоком уровне; компетенции сформированы
Средний	«4» (хорошо)	теоретическое содержание и практические навыки по дисциплине освоены полностью; все предусмотренные программой обучения учебные задания выполнены с незначительными замечаниями; компетенции в целом сформированы
Удовлетвори- тельный	«3» (удовлетворительно)	теоретическое содержание и практические навыки по дисциплине освоены частично, но пробелы не носят существенного характера; большинство предусмотренных программой обучения учебных задач выполнено, но в них имеются ошибки; компетенции сформированы частично
Неудовлетвори- тельный	«2» (неудовлетворительно)	теоретическое содержание и практические навыки по дисциплине не освоены; большинство предусмотренных программой обучения учебных заданий либо не выполнено, либо содержит грубые ошибки; дополнительная самостоятельная работа над материалом не приводит к какому-либо значимому повышению качества выполнения учебных заданий; компетенции не сформированы

8.3. Методические материалы (типовые контрольные задания), определяющие результаты обучения по дисциплине, характеризующие этапы формирования компетенций

Контрольные задания, применяемые в рамках текущего контроля и промежуточной аттестации по дисциплине, носят универсальный характер и предусматривают возможность комплексной оценки сформированности всего набора заявленных по данной дисциплине компетенций.

8.3.1. Текущий контроль (работа на лабораторных работах)

(формирование компетенций ОПК-1, ОПК-2, ПК-28)

На практических занятиях решаются задачи по темам лекционных занятий.

Тематика практических работ представлена в разделе 5.4.

Результаты практической работы представляются в отчете и оцениваются по 5 бальной системе.

8.3.2. Текущий контроль (контрольные вопросы)

(формирование компетенций ПК-7, ПК-17, ПК-28)

8.3.2.1 Примеры вопросов на лабораторных занятиях

- 1. Приведите примеры наиболее известных программ для 3D-моделирования с открытым кодом
- 2. С помощью каких команд осуществляется управление плоскостью и сечением сложной формы в графических редакторах?
- 3. Какие команды позволяют управлять сечениям и плоскостями в процессе создания 3D-модели?
- 4. Как осуществляется управление форматами при экспортировании 3D-модели для последующего изготовления объекта с помощью 3D-принтеров?
- 5. Какие способы управления качеством используются в процессе 3D-сканирования?
- 6. Достоинства и недостатки технологии стериолитографии?
- 7. Какие материалы используются для 3D-печати фотополимерной смолой?

8.3.2.2 Примеры тестов текущего контроля

Тест 1. Что из перечисленного НЕ является особенностью технологии 3D-печати?
□ Возможность кастомизировать дизайн
□ Увеличение числа отходов
□ Возможность оперативно вносить изменения впроцессе производства
□ Упрощение логистики
□ Высокая стоимость производства малых партий
Тест 2. Какие методы 3D-печати наиболее широко распространены?
□ Экструзионные
□ Струйные
□ Послойные порошковые
□ Путем прямого подведения энергии
Тест 3. Термин, который обозначает вычислительную процедуру представления
3D-модели в виде массива 2D-слоев называется

8.3.3. Темы рефератов

- 1. Основные инструменты управления процессом создания моделей.
- 2. Математические объекты, изменение их параметров и задачи формирования качества моделей.
- 3. Особенности преобразования моделей и обеспечение качества по основным

- показателям.
- 4. Построение объемных моделей из плоских изображений и управление их основными показателями качества.
- 5. Создание сложных моделей и формирование их качества.
- 6. Особенности 3D-печати и обеспечение качества записи.
- 7. Особенности создания моделей в Paint 3D и управляемые параметры дизайна.
- 8. Модификация моделей в Paint 3D.
- 9. Построение моделей с использованием встроенных инструментов в 3D Builder и управление качеством проектируемых объектов.
- 10. Подготовка и коррекция моделей в 3D Builder.
- 11. Особенности работы в программе Wanhao Cure, преимущества и недостатки.
- 12. Управление выводом и настройки 3D-принтера.
- 13. Печать с использованием биочернил. Экструзионная биопечать. Преимущества и недостатки методов.
- 14. Литографические и гибридные методы 3D-печати. Управление качеством, области применения.

Темы рефератов могут предлагаться обучающимися и согласовываться с преподавателем.

8.3.4. Промежуточный контроль (вопросы к экзамену)

- 1. Определение аддитивных технологий производства.
- 2. История 3D-печати и области применения 3D-методов.
- 3. Классификация технологий 3D печати.
- 4. Моделирование в 3D-печати.
- 5. Классификация 3D сканеров. Основные технологические характеристики сканеров.
- 6. Оптическое 3D-сканирование и управление процессом сканирования.
- 7. Экструзионные методы 3D-печати. Преимущества и недостатки методов.
- 8. Порошковые методы 3D-печати. Преимущества и недостатки методов.
- 9. Компьютерное проектирование: твердотельное моделирование, моделирование поверхности, скалптинг.
- 10. 3D-сканирование и фотограмметрия.
- 11. Устройство и принцип работы лазерного 3D-сканера. Управление процессом сканирования.
- 12. Струйные методы 3D-печати. Преимущества и недостатки методов.
- 13. Скаффолды. Биопечать на основе капель.
- 14. Стереолитография (SLA) и проекционная печать (DLP). Постобработка в SLA и DLP.
- 15. Печать с использованием непрерывного жидкого интерфейса и другие методы быстрой печати методом стереолитографии.
- 16. Двухфотонная лазерная литография (2РР). Преимущества и недостатки.
- 17. Стереолитография (SLA) и проекционная печать (DLP).
- 18. Электрохимическая 3D-печать. Преимущества и недостатки.
- 19. Разновидности ПО для 3D-моделирования с открытым кодом.
- 20. Управление созданием 3D-модели по сечениям и плоскостям.
- 21. Основные направления применения аддитивных технологий в дизайне.
- 22. Основные способы 3D-сканирования.
- 23. Разновидности технологий 3D-печати.
- 24. Типовое программное обеспечение, используемое для подготовки 3D-моделей к 3D-печати.

- 25. Основные технологические характеристики оптических, лазерных, контактных 3D-сканеров.
- 26. Параметры, определяющие точность контактного 3D-сканирования.
- 27. Параметры, определяющие точность оптического 3D-сканирования.
- 28. Параметры, определяющие точность лазерного 3D-сканирования.
- 29. Способы управления качеством 3D-сканирования.
- 30. Основные принципы доработки 3D-модели после сканирования.
- 31. Достоинства и недостатки экструзионной 3D-печати.
- 32. Устройство и принцип работы экструзионных 3D-принтеров.
- 33. Основные параметры, определяющие качество и скорость 3D-печати.
- 34. Основные программы (Слайсеры) для генерации кода, управляющего 3D-принтером.
- 35. Технология подготовки 3D-принтера к работе.
- 36. Способы повышения качества 3D-печати.
- 37. Устройство и принцип работы 3D-принтеров, печатающих жидкой фотополимерной смолой.
- 38. Основные параметры, определяющие качество и скорость 3D-печати фотополимерной смолой.
- 39. Способы повышения качества 3D-печати по технологии стериолитографии.